Number Bases

On Thursday we discussed the binary number system; however, I did not have anything prepared. And so I have prepared the following.

1) Decimal or Base 10.

Let's start with decimal.

a) Number of digits The decimal system uses 10 digits: 0,1,2,3,4,5,6,7,8,9.

b) Base

The base for the decimal system is 10. So when we see a number like 9876.54, we interpret it using the following

Thousands	Hundreds	Tens	Units	Tenths	Hundredths
9	8	7	6	5	4

In fact we should use the following instead.

10 ³	102	101	100	10-1	10-2
9	8	7	6	5	4

To give us its value

 $9x10^3 + 8x10^2 + 7x10^1 + 6x10^0 + 5x10^{-1} + 4x10^{-2}$

= 9000 + 800 + 70 + 6 + 0.5 + 0.04

This can be applied to any number base system.

2) Binary or base 2

- a) Number of digits is 2: 0,1.
- b) Base is 2.
- c) Example: what is 1010 binary in base 10?

23	22	21	20
1	0	1	0

To get its value in terms of the decimal system

 $1x2^3 + 0x2^2 + 1x2^1 + 0x10^0 = 1x8 + 0x4 + 1x2 + 0x1 = 8 + 2 = 10$

3) Octal or base 8

- a) Number of digits is 8: 0,1,2,3,4,5,6,7.
- b) Base is 8.
- c) Example: what is 7654 octal (or base 8) in base 10.

83	82	81	80
7	6	5	4

To get its value in terms of the decimal system

 $7x8^3 + 6x8^2 + 5x8^1 + 4x8^0$

= 7x512+6x64+5x8+4x1

=4584 + 384 + 40 + 4

= 4012

- 4) Hexadecimal or Base 16
 - a) Number of digits is 16 (and we have to invent some new numeric characters): 0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F where A stands for 10 decimal, B for 11, up to F for 15.
 - b) Base is 16.
 - c) Example: what is BA98 hexadecimal in base 10.

16 ³	16 ²	16 ¹	160
В	А	9	8

To get its value in terms of the decimal system

Bx4096 + Ax16² + 9x16¹ + 8x16⁰

= 11x4096+10x256+9x16+8x1

=45056 + 2560 + 144 + 8

= 47768

5) Why do we need Hexadecimal? It's short of a concise shorthand.

Note that we can use 4 binary digits to represent a single hexadecimal digit.

Binary	Hexadecimal	Binary	Hexadecimal
0000	0	1000	8
0001	1	1001	9
0010	2	1010	A (or 10)
0011	3	1011	B (or 11)
0100	4	1100	C (or 12)
0101	5	1101	D (or 13)
0110	6	1110	E (or 14)
0111	7	1111	F (or 15)

Since computers use a basic 8-bit entity or a byte, we can use two hexadecimal digits.

Let's say we have a number, which is represented by 2 hexadecimal digits, FA.

Its value is

 $Fx16^{1} + Ax16^{0}$

= 15x16 + 10x1

= 240 + 10

=250

If binary was used then

11111010

 $=1x2^{7}+1x2^{6}+1x2^{5}+1x2^{4}+1x2^{3}+0x2^{2}+1x2^{1}+0x2^{0}$

=128+64+32+16+8+0+2+0

= 250.

Which is easier to use?