Number Bases

On Thursday we discussed the binary number system; however, I did not have anything prepared. And so I have prepared the following.

1) Decimal or Base 10 .

Let's start with decimal.
a) Number of digits

The decimal system uses 10 digits: 0,1,2,3,4,5,6,7,8,9.
b) Base

The base for the decimal system is 10 . So when we see a number like 9876.54 , we interpret it using the following

Thousands	Hundreds	Tens	Units	Tenths	Hundredths
9	8	7	6	5	4

In fact we should use the following instead.

10^{3}	10^{2}	10^{1}	10^{0}	10^{-1}	10^{-2}
9	8	7	6	5	4

To give us its value

$$
\begin{aligned}
& 9 \times 10^{3}+8 \times 10^{2}+7 \times 10^{1}+6 \times 10^{0}+5 \times 10^{-1}+4 \times 10^{-2} \\
& =9000+800+70+6+0.5+0.04 \\
& \quad=9876.54
\end{aligned}
$$

This can be applied to any number base system.
2) Binary or base 2
a) Number of digits is $2: 0,1$.
b) Base is 2 .
c) Example: what is 1010 binary in base 10 ?

2^{3}	2^{2}	2^{1}	2^{0}
1	0	1	0

To get its value in terms of the decimal system

$$
1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 10^{0}=1 \times 8+0 \times 4+1 \times 2+0 \times 1=8+2=10
$$

3) Octal or base 8
a) Number of digits is $8: 0,1,2,3,4,5,6,7$.
b) Base is 8 .
c) Example: what is 7654 octal (or base 8) in base 10.

8^{3}	8^{2}	8^{1}	8^{0}
7	6	5	4

To get its value in terms of the decimal system

$$
\begin{aligned}
& 7 \mathrm{x} 8^{3}+6 \mathrm{x} 8^{2}+5 \mathrm{x} 8^{1}+4 \mathrm{x} 8^{0} \\
& =7 \mathrm{x} 512+6 \mathrm{x} 64+5 \mathrm{x} 8+4 \mathrm{x} 1 \\
& =4584+384+40+4 \\
& =4012
\end{aligned}
$$

4) Hexadecimal or Base 16
a) Number of digits is 16 (and we have to invent some new numeric characters): $0,1,2,3,4,5,6,7,8,9$, A, B, C, D, E, F where A stands for 10 decimal, B for 11, up to F for 15 .
b) Base is 16 .
c) Example: what is BA98 hexadecimal in base 10.

16^{3}	16^{2}	16^{1}	16^{0}
B	A	9	8

To get its value in terms of the decimal system
$B x 4096+A x 16^{2}+9 \times 16^{1}+8 \times 16^{0}$
$=11 \times 4096+10 \times 256+9 \times 16+8 \times 1$
$=45056+2560+144+8$
$=47768$
5) Why do we need Hexadecimal? It's short of a concise shorthand.

Note that we can use 4 binary digits to represent a single hexadecimal digit.

Binary	Hexadecimal	Binary	Hexadecimal
0000	0	1000	8
0001	1	1001	9
0010	2	1010	A (or 10)
0011	3	1011	B (or 11)
0100	4	1100	C (or 12)
0101	5	1101	D (or 13)
0110	6	1110	E (or 14)
0111	7	1111	F (or 15)

Since computers use a basic 8-bit entity or a byte, we can use two hexadecimal digits.
Let's say we have a number, which is represented by 2 hexadecimal digits, FA.
Its value is

Fx16 ${ }^{1}+\mathrm{Ax} 16^{0}$
$=15 \times 16+10 \times 1$
$=240+10$
$=250$
If binary was used then
11111010

$$
\begin{aligned}
& =1 \mathrm{x} 2^{7}+1 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}+1 \mathrm{x} 2^{3}+0 \times 2^{2}+1 \mathrm{x} 2^{1}+0 \times 2^{0} \\
& =128+64+32+16+8+0+2+0 \\
& =250
\end{aligned}
$$

Which is easier to use?

